Digital Laboratory Power Supply: Design Aspects and Testing

Aravind CV¹, Saniy², Ramesh GP³

School of Engineering, Taylor’s University, Malaysia ¹, ², St.Peters University, TN, India.

Abstract—Digital control power supply ranging from 0V-24V with maximum current of 2A is designed and developed for use in the laboratory set-up. The developed system is for precise control of applied voltage to the equipment thereby increasing the reliability of the laboratory equipment’s. Unit.

Keywords—digital power supply, microcontroller, laboratory equipment

I. INTRODUCTION

Power supply is the most important aspect of electrical and electronics system as it provides the power to operate appliances or devices. This research focus on the development of a digital controlled bench power supply for laboratory utilization [1-3]. Basically there are few types of power supply and the most common are linear power supply and switching power supply. In addition to that, control and monitoring via real time software application is very rare in power supply development particularly for laboratory setup as it is oversees as a very useful tool to provide a very informative data for the user. Furthermore, by implementing the graphical user interface, it can provide control via specific communication protocol such as RS232. The control can be either voltage or current value settings which is very important in laboratory equipment evaluations.

II. METHODOLOGY

A. Digital Power Supply

Typically regulated DC power supply is produce in such a way that the output comes directly from the regulators. But nowadays, digital control of regulated DC power supply is essential to provide a precise and stable power supply for critical mission control systems. As mentioned in [13], in any battery powered and portable devices power dissipation efficiency is very important in order to have optimum output utilization. It also said that by reducing the frequency of the clock in synchronous digital clock it also reduces the power but the energy utilize remain the same. This is very crucial findings in the design of the digital power supply as it help to reduce the amount of the power usage but at the same time the amount of the energy is at its best. In any electrical and electronics devices the energy loss is really taken into picture because it Reflect how much efficient in any such system. Although to gain unity efficiency is almost impossible, engineers are still improvising in such a way any electrical and electronics appliances almost hit unity efficiency.

B. Hardware Development

(i) Step-down Transformer

The specification of the digital control power supply is to be designed for the range of 0 V DC to 24 V DC with maximum current of 1.5 A. Therefore the specification of the transformer chosen is a mid-point configuration of 18V_{RMS}-0-18V_{RMS} 100VA. Since it is centered tap transformer, the output is drawn peak to peak. The range of maximum current the transformer is shown in the Table 1 below. The rating of the transformer is purposely chosen with higher voltage and current value in order to overcome the system power supplement when full load applied. The stepping down of the mains voltage which is 240V_{RMS} 50 Hz to certain specified range is essential in order to provide a safe working environment as well as to provide isolation when any fault occurred during the testing and analyzing stages.

<table>
<thead>
<tr>
<th>V_{RMS} (V)</th>
<th>Volt-Ampere (VA)</th>
<th>Maximum Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>100</td>
<td>5.55</td>
</tr>
<tr>
<td>36</td>
<td>100</td>
<td>2.77</td>
</tr>
</tbody>
</table>

TABLE 1. Transformer Specifications

(ii) Bridge rectifier and voltage regulator

Since the research only provide a DC output, the voltage input from the stepped down transformer need to be rectified to produce a DC value that can feed the electronics system which include the voltage regulator. A full bridge rectifier had been used to produce a signal that oscillates in positive voltage. This rectified signal has ripple voltage which is equivalent to the peak voltage of the signal. With a fixed resistance value of 1000 ohm, ripple voltage of 36 V_{RMS}, current rating of 100VA/36V_{RMS} = 2.7A, mains frequency (f) of 50 Hz, the value of the designed capacitor is using Equation (1)

\[C = \frac{1}{2fV_{RIPPLE}} \]

(1)

Based on the calculation the product of the capacitor value and the resistance which is the time constant must exceed the time period of the system which is 1/50 Hz = 0.02 seconds. Therefore the value of the resistor and capacitor above must satisfy the Equation (2).

\[RC >> \frac{1}{f} \]

(2)

ICGPC 2014
St.Peter’s University, TN, India.
Figure 1 Block representations of the investigations

Figure 2 shows the bridge circuit used in the design. Figure 3 shows the simulation results. The value of the capacitor is being varied to monitor the ripple voltage of the output. In Figure 3 (a) shows the signal of the stepped down signal of 36 V_{RMS}. The peak value is 50.9 V. The figure simulates a perfect sine wave with no ripple. Figure 3 (b) is the signal of the full wave bridge rectifier. The voltage ripple is equivalent to the peak voltage which is 50.9 V_{RMS} when there is no load. In Figure 3 (c) shows the same signal with a smoothing capacitor with the value of 100 µF giving 3.981 V_{RMS} of ripple voltage whereas in Figure 3 (d), with a smoothing capacitor of 530.45 µF giving 801.526 mV_{RMS} ripple voltage. Upon completing the simulation, another circuit had been built and tested in order to obtain more understanding and to perform a further investigation on how the system works.

Figure 2 Rectifier Circuit

C. Software Development

Basically there are two parts that required software approach in order to develop the system. The first part is the embedded system that carries the functions of the microcontroller and the second part is the graphical user interface that control the system output and monitor both the system input and output.
The flow for programming the microcontroller.
The user can choose on the level of the voltage level and using the communication interface and the microcontroller the output is seen. Table 2 shows the various voltage level conditions both using the physical measurement and the measurement through the graphical user interface.

III. RESULTS AND DISCUSSIONS

The experiment is performed in order to analyze the output performance of the system. The load that being used is a DC fan with specification of 12V, 0.20A connected in series with been put on the blade of the fan. The ‘freezing’ moment can be obtained by tuning the stroboscope’s frequency. The test is being performed by increasing the voltage source of the DC fan in the sequence of 0V, 5V, 9V, 12V and 20V. a current limiting resistor. In order to measure the speed of the fan, a stroboscope had been used to ‘freeze’ the mark that had Figure 11 shows the graphic user interface stages at various voltage levels at the input and the controlled voltage at the output.

<table>
<thead>
<tr>
<th>Voltage Selection (V)</th>
<th>Input Voltage (V)</th>
<th>Output Voltage (V)</th>
<th>Tolerance (±V)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured</td>
<td>Monitored</td>
<td>Measured</td>
</tr>
<tr>
<td>0</td>
<td>51.4</td>
<td>50.90</td>
<td>0.00</td>
</tr>
<tr>
<td>5</td>
<td>50.9</td>
<td>50.65</td>
<td>4.9</td>
</tr>
<tr>
<td>9</td>
<td>50.8</td>
<td>50.75</td>
<td>9.1</td>
</tr>
<tr>
<td>12</td>
<td>50.9</td>
<td>50.80</td>
<td>12.2</td>
</tr>
<tr>
<td>20</td>
<td>50.9</td>
<td>50.65</td>
<td>19.8</td>
</tr>
</tbody>
</table>

TABLE 2. Results of non-mixed and two mixed signal

REFERENCES

